
GenometriCorr (Genometric Correlation): an R

package for spatial correlation of genome-wide

interval datasets

Alexander Favorov*, Loris Mularoni, Yulia Medvedeva,
Harris A. Jaffee, Ekaterina V. Zhuravleva, Veronica Busa, Leslie M. Cope,

Andrey A. Mironov, Vsevolod J. Makeev, Sarah J. Wheelan

March 23, 2021

1 Introduction

1.1 Genometric layouts; independence or correlation

1.1.1 Using distance as a proxy for functional correlation

High-throughput sequencing has become a popular and ever more affordable
method in molecular biology and clinical experiments, and will soon become
a routine laboratory technique. Sequencing reads are mapped to a reference
genome and the results are often drawn as points along lines representing chro-
mosomes, with the layout of the points reflecting the physical distance between
mapped reads. While this depiction is a convention, it is based on a longstanding
belief that proximity on a chromosome implies potential functional interaction.

If sequencing results are analyzed as points on a line, we can measure the
physical distance between sequencing results and annotated genomic features.
Deviations in these measurements from the expected distributions indicate as-
sociations (or anti-associations) that may be biologically interesting. While it
is not difficult to judge these associations by eye, a genome-wide assessment of
spatial correlations is impractical to do manually.

Many, though certainly not all, functional relationships in genetics are based
on proximity. For example, a promoter will be near the 5’ end of the gene that
it controls, a splicing control signal will be near splice sites, transcription factor
binding sites will cluster where the transcription factors bind to regulate gene
activity, and more. Measuring the proximity of a set of points on the genome
to various genomic features will direct future experiments.

Note that this type of correlation is not intended to give final results, but to
generate testable hypotheses.

*favorov@sensi.org

1

Genomic intervals are anything that can be stored as a chromosome number,
start, and end. Strands are not considered but could be managed by subsetting
the data. Genomic intervals can be represented as blocks on a line:

Figure 1: Genomic intervals

1.1.2 Intervals can be correlated or independent

If we have two types of features, they can be correlated, or they can be in-
dependent. If the features are independent, the locations of one type of feature
are randomly positioned with respect to the other, while if they are correlated,
the locations of the feature types will, on average, follow a recognizable pattern;
the features can be a relatively constant distance apart, they can be consistently
near or far away from each other in genomic coordinates, or they can prefer-
entially overlap (or only rarely overlap). Thus, if features are correlated, the
locations of one type of feature give information about the positions of the other
type of feature.

Figure 2: Three sets of genomic intervals. A and B are correlated, A and C are
independent.

1.1.3 Correlation comes in many different flavors

We will introduce some terminology for simplicity. The set of intervals whose
positions are considered fixed in the genome is the reference set. The intervals
whose positions are being tested to see whether they are related to the reference
set in any way is the query set. Note that the comparison is thus asymmetric.

Figure 3 shows the basic question we are asking.
Figure 4 illustrates some important complications that we address.
Comparing the intervals in query 1 to the reference intervals, we see that the

two sets of intervals consistently do not overlap. They are not independent, and
the statistics will show that they are anticorrelated. The query 2 intervals do
overlap substantially with the reference intervals and are thus correlated; again
the statistics will reflect this and will show a positive association. Query 3 has
only one interval. That interval overlaps with a reference interval, so query 3
is correlated with the reference. However, if the query and reference identities

2

Figure 3: Our goal is to determine whether the query points are correlated to the
reference points. We do this, in essence, by assuming that if they are independent,
they will be uniformly distributed with respect to the reference points, and if not, the
density of distance between query and reference points will be nonuniform.

Figure 4: Four scenarios.

are reversed, most of the new query intervals do not overlap with and are not
near the single new reference interval, so these two datasets have an asymmetric
relationship. Only by testing every query-reference set in both directions can we
uncover such an asymmetry. The last set of intervals, query 4, brings up different
issues. We can measure the relationship between the query and reference in two
ways. First, we can look at the distribution of the midpoints of the query
intervals with respect to the distribution of the reference interval midpoints and
record the distances as ratios (for example, if the query is 10 units from one
reference point and 90 units from the nearest on the other side, its ratio will
be 0.1). In a large genome this works well, because average distances are big,
so distinguishing a position 10% into an inverval from a position 30% into an
interval is easy. Second, we can look at the raw distance between the midpoints
of the query and the midpoints of the reference. This works well for small
genomes because here the midpoints of the reference can be close enough that
if a query midpoint is, for example, always 100 bp from a reference midpoint,

3

the ratio test will show a much wider distribution, as when the query is between
two reference midpoints that are only 300 bp away the ratio test will read 0.33,
but when the reference midpoints are 1000 bp away the ratio test will read 0.1,
and the query will appear to be uncorrelated. For this reason we find it useful
to do both tests, in both directions. These concepts will be elaborated in the
next section.

1.2 Statistical approach

1.2.1 Working with intervals

Tests on relative distances
Many of the tests we use work only with pointwise data, not with intervals.

Very large intervals may relate to genomic features in different ways, depending
on whether we examine their start points, end points, both boundaries, or just
a point in the middle. Rather than trying to address this ambiguity or to
randomly guess at what the user hopes to do, we expect the user to specify
the points when the exact point is important, and we use the midpoint when
the user inputs an interval. Also, the user can provide a custom calculation to
define the representative point to use for each interval.

Now, we can characterize each query point by its relative distance, as illus-
trated in figure 5.

Figure 5: Relative distance

Formally, the relative distance di for a query point i is:

di =
min (|qi − rk| , |rk+1 − qi|)

|rk+1 − rk|
, k = arg min

qi≥rk
(qi − rk).

If the reference and query intervals are independent, the query points are po-
sitioned randomly with respect to the reference, and the di’s will be distributed
uniformly in [0, 0.5]. The corresponding p − value is obtained by using the
Kolmogorov-Smirnov test.

The Kolmogorov-Smirnov test (K-S test) is accompanied by permutation
tests to determine the level and direction of deviation from the null expecta-
tion. The ECDF (Empirical Distribution Cumulative Function) of the relative

4

Figure 6: Area between uniform ECDF for unrelated feature sets (blue) and experi-
mental ECDF for related feature sets (black) is a measure of correlation of the query
and reference feature sets.

distances di is a straight line between (0, 0) and (0.5, 1) if the query and reference
points are perfectly independent, so we compare our data to this line.

The area between the ECDF for the reference and query points and the ideal
straight line

S =

∫ 0.5

0

|ECDF (d)− ECDFideal(d)| dd

is a measure of the correlation between the query and reference. So, by drawing
N sets of values that model uniform distribution of di we get N outcomes of a
null distribution for S and thus we can evaluate the p− value for S.

Both the area permutation test and the Kolmogorov-Smirnov test show only
how much the data deviate from independence, not whether they are positively
or negatively correlated.

The sign of difference between the areas under the real ECDF curve and
the ideal ECDF curve indicates the direction of the correlation. We define a

5

correlation-like measure

CorrECDF =

∫ 0.5

0

(ECDF (d)− ECDFideal(d)) dd∫ 0.5

0

ECDFideal(d) dd

.

Positive CorrECDF indicates positive correlation (query points tend to be close
to reference points) and vice versa.

Figure 7: CorrECDF is positive for the data represented by the upper black line
(left pane); the area under it is more than the area under the blue line that marks
the distribution of independent data, so the correlation is positive. For the data
represented by the lower black line (right pane), the correlation is negative.

1.2.2 Absolute distance test

We can also determine whether the query intervals are spaced more often
than expected at a specific distance from the reference intervals; for example
a polymerase binding site and a transcription factor binding site. Figure 8
illustrates the design.

Figure 8: Query intervals are found at a fixed distance from reference intervals. Rela-
tive distances (0.4, 0.1, 0.2) are not consistent.

For each query point (contracted interval) we define the minimal distance to

6

a reference point, li = mink(qi − rk). Its mean value,

L =

∑
i

li

#q

characterizes the correlation between query and reference points. We perform a
permutation test for significance: keeping the reference points fixed, we draw N
simulated query positions that are uniformly distributed along the chromosome
and calculate L for each, to obtain the null distribution of L. The test is two-
sided and gives both the p−value for the real L, and the sign of any correlation.

1.2.3 Projection test

Another test we find useful is the projection test, which is robust when the
intervals being tested cover a fairly large percentage of the length of the refer-
ence sequence. Here, we determine the number of midpoints of query intervals
overlapping the reference intervals and test whether it is outside of the null ex-
pectation. The probability of a query midpoint falling into a reference interval
is:

p =
coverage of the reference

chromosome length

Therefore, the distribution of the number of query points that overlap reference
interval can be approximated by the binomial distribution for #q trial with
success probability p. The null hypothesis is that query points hit the reference
intervals randomly. The test is also two-sided; it provides both p-value and the
direction of correlation. Additionly, we estimate the size of the effect with the
observed/expected reatio for the number of query points that hit a reference
interval.

Figure 9: Projection test.

1.2.4 Näıve Jaccard approach

For this we do not test the relationships between points, but between inter-
vals, so this test is quite complementary to the pointwise tests.

Jaccard measure (index): J(A,B) =
A ∩B

A ∪B

To create a null distribution for comparison, we permute the order of the query
intervals across the genome, not retaining the lengths of the gaps between the
query intervals.

7

Figure 10: The Jaccard measure of the correlation of two interval sets is the ratio of
the lengths (in bases) of their intersection and their union.

1.3 Tests of correlation over an entire genome

All the tests described above are applicable to a single chromosomes or a
set of chromosomes (for example, a whole genome). The data for each test
are simply summarized over all chromosomes before checking for significance.
Another option that is available is restricting the analysis to a set of genomic
intervals; for example, asking questions about whether features are correlated
when the features always lie within genes is impossible when using the entire
genome as the potential space for feature positions, as the features will always
look tightly correlated since they co-occur within genes. Using the mapping
functions provided, each sub-interval (here, a gene) can be considered as a sepa-
rate ”chromosome,” to enable detection of correlations within smaller intervals.

1.4 GenometriCorr (Genometric Correlation) package

The package GenometriCorr provides functions to load interval data from a
plain text file (any accepted format), as well as the main procedure that tests
whether the interval sets are spatially independent, and plotting functions to
generate graphical representations of the relationships between the features.

2 Using GenometriCorr: examples

2.1 R objects that GenometriCorr understands

The interval sets are represented by the GRanges objects, which are interval
data representation classes defined by GenomicRanges package. GRanges is a
set of intervals defined over different chromosomes (AKA spaces), so it is suitable
for encoding a full-genome annotation. It also contains the chromosome length
information and ensures that operations do not return intervals beyond the

8

length of the chromosomes.

2.2 Code loading

Load the package:

> library("GenometriCorr")

2.3 Let’s load files

We will use the import function from rtracklayer package to read data
for the query and reference intervals (the result will be used in later narration).
The two files describe the coordinates of CpG islands and of RefSeq genes in
human genome (v19).

> library("rtracklayer")

> library("TxDb.Hsapiens.UCSC.hg19.knownGene")

> refseq <- transcripts(TxDb.Hsapiens.UCSC.hg19.knownGene)

> cpgis <- import(system.file("extdata",

+ "UCSCcpgis_hg19.bed", package = "GenometriCorr"))

> seqinfo(cpgis) <- seqinfo(TxDb.Hsapiens.UCSC.hg19.knownGene)[seqnames(seqinfo(cpgis))]

The information about lengths and names of chromosomes is coded in se-

qinfo provided by TxDb.Hsapiens.UCSC.hg19.knownGene. The refseq object
contains it; the cpgis is read from a bed file and thus we set the seqinfo. If
both the query and reference objects do not carry seqinfo, the information
can be passed via chromosomes.length parameter that is organized exactly as
seqlenghts(GenomicRanges) result. It is, a numeric vector with names, which
are chromosome names.

If the chromosome lengths are not either given explicitly or coded in reference
or in query, they are taken to be the maximum of the reference and query
coordinates provided, per chromosome, and a warning is generated. You can
suppress the warning with suppress.evaluated.length.warning=TRUE.

2.4 Visualize the query and reference intervals

Sometimes, it is useful to examine a pair of interval sets by eye, to add infor-
mation to the statistical results. Three visualization procedures are provided.

Let’s look at the CpG islands and KnownGenes genes on chromosomes 1
(hg19).

> VisualiseTwoIRanges(ranges(cpgis[seqnames(cpgis) ==

+ "chr1"]), ranges(refseq[seqnames(refseq) ==

+ "chr1"]), nameA = "CpG Islands", nameB = "RefSeq Genes",

+ chrom_length = seqlengths(TxDb.Hsapiens.UCSC.hg19.knownGene)["chr1"],

+ title = "CpGIslands and RefGenes on chr1 of Hg19")

9

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08 2.5e+08

CpG Islands

RefSeq Genes

in
te

rs
ec

tio
n

in
te

rs
ec

tio
n

10
49

99
10

49
99

16
84

66
88

Chromosome position: 785453 nucleotides per pixel

CpGIslands and RefGenes on chr1 of Hg19

On the right: covered nucleotides that yields full color intensity of a pixel

Actually, we can look at all the choromomes, one per page, in a milti-page
pdf the is created by VisualiseTwoGRanges function.

2.5 The main procedure

GenometriCorrelation tests the null hypothesis that the query and refer-
ence intervals are spatially independent; that is, that they have no significant
relationship in terms of genomic coordinates.

> permut.number <- 100

> cpgi_to_genes <- GenometriCorrelation(cpgis,

+ refseq, chromosomes.to.proceed = c("chr1",

+ "chr2", "chr3"), permut.number = permut.number,

+ keep.distributions = TRUE, showProgressBar = FALSE)

The result is an object of the (S4) GenometriCorrResult class. The class
is actually (inferred from) a list of results with some useful functionality. The
simplest is the show() method.

> print(cpgi_to_genes)

chr1

query.population 2462

reference.population 7967

10

alternative "two.sided"

query.coverage 1881629

reference.coverage 116939971

relative.distances.ks.p.value 2.199463e-11

relative.distances.ecdf.deviation.area 0.02188097

relative.distances.ecdf.area.correlation 0.08747395

query.reference.intersection 1305420

query.reference.union 117516180

jaccard.measure 0.01110843

projection.test.obs.to.exp 1.597282

projection.test.direction "attraction"

projection.test.p.value 1.176203e-176

scaled.absolute.min.distance.sum 1536.773

relative.distances.ecdf.deviation.area.p.value "<0.02"

relative.distances.ecdf.deviation.area.test.direction "attraction"

scaled.absolute.min.distance.sum.p.value "<0.02"

scaled.absolute.min.distance.sum.test.direction "attraction"

jaccard.measure.p.value "<0.02"

jaccard.measure.test.direction "attraction"

chr2

query.population 1688

reference.population 5092

alternative "two.sided"

query.coverage 1379397

reference.coverage 109822784

relative.distances.ks.p.value 0

relative.distances.ecdf.deviation.area 0.03430315

relative.distances.ecdf.area.correlation 0.1370043

query.reference.intersection 889234

query.reference.union 110312947

jaccard.measure 0.008061012

projection.test.obs.to.exp 1.474565

projection.test.direction "attraction"

projection.test.p.value 1.82237e-70

scaled.absolute.min.distance.sum 959.9135

relative.distances.ecdf.deviation.area.p.value "<0.02"

relative.distances.ecdf.deviation.area.test.direction "attraction"

scaled.absolute.min.distance.sum.p.value "<0.02"

scaled.absolute.min.distance.sum.test.direction "attraction"

jaccard.measure.p.value "<0.02"

jaccard.measure.test.direction "attraction"

chr3

query.population 1163

reference.population 4328

alternative "two.sided"

query.coverage 882783

11

reference.coverage 100086725

relative.distances.ks.p.value 2.589502e-10

relative.distances.ecdf.deviation.area 0.02144485

relative.distances.ecdf.area.correlation 0.08809636

query.reference.intersection 631106

query.reference.union 100338402

jaccard.measure 0.006289775

projection.test.obs.to.exp 1.478352

projection.test.direction "attraction"

projection.test.p.value 4.013263e-64

scaled.absolute.min.distance.sum 681.6992

relative.distances.ecdf.deviation.area.p.value "<0.02"

relative.distances.ecdf.deviation.area.test.direction "attraction"

scaled.absolute.min.distance.sum.p.value "<0.02"

scaled.absolute.min.distance.sum.test.direction "attraction"

jaccard.measure.p.value "<0.02"

jaccard.measure.test.direction "attraction"

awhole

query.population 5313

reference.population 17387

alternative "two.sided"

query.coverage 4143809

reference.coverage 326849480

relative.distances.ks.p.value 0

relative.distances.ecdf.deviation.area 0.02563675

relative.distances.ecdf.area.correlation 0.1033465

query.reference.intersection 2825760

query.reference.union 328167529

jaccard.measure 0.008610724

projection.test.obs.to.exp 1.526032

projection.test.direction "attraction"

projection.test.p.value 5.252899e-297

scaled.absolute.min.distance.sum 3178.385

relative.distances.ecdf.deviation.area.p.value "<0.02"

relative.distances.ecdf.deviation.area.test.direction "attraction"

scaled.absolute.min.distance.sum.p.value "<0.02"

scaled.absolute.min.distance.sum.test.direction "attraction"

jaccard.measure.p.value "<0.02"

jaccard.measure.test.direction "attraction"

The GenometriCorrelation function calculates the correlation statistics
previously described, on each chromosome separately, and then on the genome
as a whole (”awhole”). The visualization above suggested that the query and
reference intervals are correlated. The resulting list is structured by the names
of the chromosomes used and an additional ’awhole’ pseudochromosome. For
each of them, it contains the following data:

12

� The very low p-value calculated in relative.distances.ks.p.value is in
accordance with the observation. The value of relative.distances.ecdf.area.correlation
is positive, so the query and reference are in general closer to each other
than we would expect if they are independent.

� The projection.test.p.value is quite low, indicating either significantly
more overlap than expected or overlap or significant lack of overlap.

� All three permutation tests give <0.02 meaning that the observed spatial
relationships (absolute or relative distance apart) are significantly different
than what is seen in the permutation distribution.

� As far as the the alternative parameter was two.sides (the default
value), the p-value are two time more than we could get in one-sided test,
and the call also returns the direction of the effect. The return values
projection.test.direction, jaccard.measure.test.direction, and
scaled.absolute.min.distance.sum.test.direction inform us that the
effect is attraction in all three tests. In other datasets, the values may be
very different; for example, the query and reference intervals can be sepa-
rated by a consistent and large distance, giving a significant absolute dis-
tance correlation with scaled.absolute.min.distance.sum.direction

== ’repulsion, and the overlap measures may or may not indicate con-
sistent non-overlapping intervals, depending on the size of the genome and
the distances involved. Thus the various tests are extremely useful as a
whole, to determine the relationship between the query and reference data
in a much more precise way. If the direction of the alternative is stated by
the alternative parameter (’attraction’ or repulsion), it is passed
to the direction fields in the result and the directions are caculated for
one-sided test.

Let’s rerun it for the whole 3-chromosome aggregate (awhole.only=TRUE) it
with these alternatives..

> cpgi_to_genes_two.sided <- GenometriCorrelation(cpgis,

+ refseq, chromosomes.to.proceed = c("chr1",

+ "chr2", "chr3"), awhole.only = TRUE,

+ permut.number = permut.number, keep.distributions = TRUE,

+ showProgressBar = FALSE, alternative = "attraction")

The result for attration is:

> print(cpgi_to_genes_two.sided)

awhole

query.population 5313

reference.population 17387

alternative "attraction"

query.coverage 4143809

13

reference.coverage 326849480

relative.distances.ks.p.value 0

relative.distances.ecdf.deviation.area 0.02563675

relative.distances.ecdf.area.correlation 0.1033465

query.reference.intersection 2825760

query.reference.union 328167529

jaccard.measure 0.008610724

projection.test.obs.to.exp 1.526032

projection.test.p.value 2.626449e-297

scaled.absolute.min.distance.sum 3178.385

relative.distances.ecdf.deviation.area.p.value "<0.01"

scaled.absolute.min.distance.sum.p.value "<0.01"

jaccard.measure.p.value "<0.01"

> cpgi_to_genes_two.sided <- GenometriCorrelation(cpgis,

+ refseq, chromosomes.to.proceed = c("chr1",

+ "chr2", "chr3"), awhole.only = TRUE,

+ permut.number = permut.number, keep.distributions = TRUE,

+ showProgressBar = FALSE, alternative = "repulsion")

The result for repulsion is:

> print(cpgi_to_genes_two.sided)

awhole

query.population 5313

reference.population 17387

alternative "repulsion"

query.coverage 4143809

reference.coverage 326849480

relative.distances.ks.p.value 0

relative.distances.ecdf.deviation.area 0.02563675

relative.distances.ecdf.area.correlation 0.1033465

query.reference.intersection 2825760

query.reference.union 328167529

jaccard.measure 0.008610724

projection.test.obs.to.exp 1.526032

projection.test.p.value 1

scaled.absolute.min.distance.sum 3178.385

relative.distances.ecdf.deviation.area.p.value 1

scaled.absolute.min.distance.sum.p.value 1

jaccard.measure.p.value 1

It is helpful to use visualization tools like those shown in Figures 6 and
7. Two types of graphical output are available for the GenometriCorrResult

class. In both cases, use the keep.distributions=TRUE parameter in the
GenometriCorrelation call so that the object returned by the call contains the

14

chr1

Query population : 2462
Reference population : 7967

Relative Ks p−value : 2.19946e−11
Relative ecdf deviation area : 0.021881

Relative ecdf area correlation : 0.0874739
Relative ecdf deviation area p−value : <0.02

Scaled Absolute min. distance p−value : <0.02
Scaled Absolute min. direction :
Jaccard Measure p−value : <0.02

Jaccard Measure test direction : attraction
Projection test p−value : 1.1762e−176

Projection test direction : attraction
Projection test observed to expected ratio : 1.59728

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Absolute distances

Distance (bp)

C
um

ul
at

iv
e

fr
ac

tio
n

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative distances

Fractional distance

C
um

ul
at

iv
e

fr
ac

tio
n

Figure 11: Simple graphical output for chromosome 1

distribution data needed to report anything more than the correlation statistics.
Below is an example, generated by graphical.report function, for chromosome
1, the default (attraction) alternative.

is ’attraction’ means that we either asked to test this alternative in the
alternative parameter set to ’attration’ (default) or that the alternative

was ’two.sided’ and see more overlap of the query and reference intervals than
we would expect if they were independent. projection.test.obs.to.exp that
is about 1.5, so it is larger than 1, that is in concoradance with ’attraction’. If
the alternative is ’two.sided’, the p-value will be two times more than for
alternative==’attration’.

> graphical.report(cpgi_to_genes, pdffile = "CpGi_to_RefSeq_chr1_picture.pdf",

+ show.chromosomes = c("chr1"), show.all = FALSE)

Another graphical display is available. The visualize function has the same
parameters as graphical.report and also requires that the initial function be
run with keep.distributions=TRUE. An example for chromosome 1 follows.

> visualize(cpgi_to_genes, pdffile = "CpGi_to_RefSeq_chr1_picture_vis.pdf",

+ show.chromosomes = c("chr1"), show.all = FALSE)

The two panes represent absolute (left) and relative (right) distance distri-
bution. The absolute distances aje not scaled by chromosome length, they are
just distances, so the picture sometimes can be not in agreement with the scaled
absolute distance statistics. Here, the observed distribitions are shown by black
lines, while the expected are blue. The expected cdf for relative (right pane)
distance is diagonal, and it correspond to uniform in [0, 0.5]. For the expected
cdf(a) for the absolute distance, we notice that

cdf(a) = p(x < a) =
∑
i

p(x < a|x ∈ Ri)p(x ∈ Ri),

where Ri is i-th reference interval. If x is the closest distance between a query
point and the Ri border and the query point that is known to be in the Ri

interval, the distribition of x is uniform in [0, |Ri|/2].

p(x < a|x ∈ Ri) =

{
1 for a ≥ Ri/2

2a/Ri for a < Ri/2

15

Results: chr1

Overlap summary (Jaccard and projection tests)

Jaccard p−value: <0.02

Query and reference intervals overlap significantly more than expected by chance, by Jaccard

Query midpoints and reference intervals overlap significantly more than expected by chance, by projection

Color key
 <− blue is negative correlation, −> red is positive correlation

Overlay line on graph is data density, over 50 bins
This range of densities is real though does not on its own convey significance

The p−value signals whether the trends are statistically significant.

Relative distance from query to reference, pvalue= <0.02

0 0.1 0.2 0.3 0.4 0.5

0
3.

8%

Absolute distance from query to reference, pvalue= <0.02

0 627.9 1255.8 1883.7 2511.6 3139.5

0
4.

8%

Results: All chromosomes

Overlap summary (Jaccard and projection tests)

Jaccard p−value: <0.02

Query and reference intervals overlap significantly more than expected by chance, by Jaccard

Query midpoints and reference intervals overlap significantly more than expected by chance, by projection

Relative distance from query to reference, pvalue= <0.02

0 0.1 0.2 0.3 0.4 0.5

0
4%

Absolute distance from query to reference, pvalue= <0.02

0 814.9 1629.8 2444.7 3259.6 4074.5

0
4.

2%

Figure 12: More colorful graphics with observed/expected trends for chromosome 1

16

p(x ∈ Ri) in the expected case is proprtional to |Ri|,

p(x ∈ Ri) = |Ri|/
∑
i

Ri = |Ri|/L.

What we denote as L here equals to the space length is we circled the reference.
So,

cdf(a) =
∑

2a≥Ri

Ri/L +
∑

2a<Ri

p(x ∈ Ri)(2a/Ri) =

∑
2a≥Ri

|Ri|
L

+
∑

2a<Ri

2a =

∑
2a≥Ri

|Ri|
L

+ 2a |{i : 2a < Ri}| ,

where |{. . .}| denotes the power (number of elenemts) ot a set.

2.6 Fast usecase. Permutation parameters.

Sometimes, we need a fast estimation of correlation measure, for example,
we make a lot of pairwise comparisons and we want to clusterise/compare the
results. To do this, we can switch off all the permutations, in other words,
to set mean.distance.permut.number,jaccard.measure.permut.number and
ecdf.area.permut.number to zero. The simplest method to do it is to set
the common permutation default parameter to zero, permut.number=0, and
not to set the three specific values. In this usecase, the result contains two
p − values, namely, the Kolmogorov-Smirnov test result for relative distances
and the binomial p− value for the projections. In addition, the result contains
two more numbers to be compared between different results: the observed-to-
expected ratio for the projection test and the correlation-like measure for the
relative distances.

User can can switch specific permutation types on by seting some of the
mean.distance.permut.number,
jaccard.measure.permut.number,
and ecdf.area.permut.number parameters to positive values along with per-

mut.number=0.

2.7 Configuration file

The main function can be called in two ways. First, the arguments can be
supplied directly to GenometriCorrelation function as before.

The second, S4-compliant way to run the main function is to create an S4
GenometriCorrConfig object from a configuration file, and then to pass the
object to the run.config function with or without changes. This enables re-
producibility and a simple interface. A file template is provided:

17

> config <- new("GenometriCorrConfig", system.file("extdata",

+ "template-config.ini", package = "GenometriCorr"))

Now, let’s print the configuration object.

> print(config)

[data]

query=UCSCcpgis_hg19.bed

query.format=bed

reference=UCSCrefseqgenes_hg19.bed

reference.format=bed

do.mapping=FALSE

[chromosomes]

chr1

chr2

chr3

[chromosomes.length]

chr1=249250621

chr2=243199373

chr3=198022430

chr4=191154276

chr5=180915260

chr6=171115067

chr7=159138663

chrX=155270560

chr8=146364022

chr9=141213431

chr10=135534747

chr11=135006516

chr12=133851895

chr13=115169878

chr14=107349540

chr15=102531392

chr16=90354753

chr17=81195210

chr18=78077248

chr20=63025520

chrY=59373566

chr19=59128983

chr22=51304566

chr21=48129895

chrM=16571

[options]

18

add.chr.as.prefix=FALSE

awhole.only=FALSE

suppress.evaluated.length.warning=FALSE

keep.distributions=TRUE

showTkProgressBar=FALSE

showProgressBar=FALSE

[tests]

ecdf.area.permut.number=100

mean.distance.permut.number=100

jaccard.measure.permut.number=100

random.seed=1248312

We can change some fields:

> config$tests$ecdf.area.permut.number <- 10

> config$tests$mean.distance.permut.number <- 10

> config$tests$jaccard.measure.permut.number <- 10

> config$chromosomes <- "chr18"

> config$showTkProgressBar = FALSE

The GenometriCorrConfig object contains all parameters for the Genomet-

riCorrelation. They are arranged in four groups: [chromosomes], [chromo-
somes.length], [options] and [tests] in the file and in corresponding lists
in the GenometriCorrConfig .

Also, there is a group [data] that describes the input for query, reference and
mapping (see below) if any. It can be empty, or it can specify the filenames and
formats of the input files, or the names of R objects in the current workspace,
to be used as query, reference and mapping data sources. If an R variable name
is used, the corresponding format is ”

As a simple illustration of using the config file we will use sequencing data,
instead of known annotations. The analyses performed by the GenometriCorr
package are applicable to any type of whole-genome data as long as it can be
specified as points or intervals in genomic coordinates. This means that the
functions can analyze sequencing data or microarray data as well as perform
comparison between annotations (as above); the sequencing or microarray data
must be presented either as points or as intervals as the package contains no
functions to do alignment. In this short example we compare ChIPseq data with
expression data on a single human chromosome.

The ChIPseq data are in .bed format; the expression data are also in .bed
format (we have assigned an expression cutoff to compare highly expressed genes
with the ChIPseq data).

> library("rtracklayer")

> histones <- import(system.file("extdata",

+ "chr18.H3K4me3.bed", package = "GenometriCorr"))

> expr_genes <- import(system.file("extdata",

+ "chr18.mRNAseq.bed", package = "GenometriCorr"))

19

And, finally, let’s start the GenometriCorrelation with this parameters:

> conf_res <- run.config(config, query = histones,

+ reference = expr_genes)

Here, we passed query and reference to the run.config call as GRanges R
objects, wo they will be pased to the GenometriCorrelation as is. run.config
also accepts filenames, file formats or the names or R variables to be used as
query, reference and mapping. To show that a variable name is passed, the
corresponding format identifier is ’R.variable.name’. All the methods of passing
data to run.config except the direct pass of R object (as in the example) can
be described in the configuration file.

The run.config returns a GenometriCorrResult object that was obtained
from GenometriCorrResult. The @config slot of the returned object is a Geno-

metriCorrConfig describing the run.
A config example with the permutation numbers already set to 10 is quick-

config.ini:

> quickconfig <- new("GenometriCorrConfig",

+ system.file("extdata", "quick-config.ini",

+ package = "GenometriCorr"))

> print(quickconfig)

[data]

query=UCSCcpgis_hg19.bed

query.format=bed

reference=UCSCrefseqgenes_hg19.bed

reference.format=bed

do.mapping=FALSE

[chromosomes]

chr1

chr2

chr3

[chromosomes.length]

chr1=249250621

chr2=243199373

chr3=198022430

chr4=191154276

chr5=180915260

chr6=171115067

chr7=159138663

chrX=155270560

chr8=146364022

chr9=141213431

chr10=135534747

20

chr11=135006516

chr12=133851895

chr13=115169878

chr14=107349540

chr15=102531392

chr16=90354753

chr17=81195210

chr18=78077248

chr20=63025520

chrY=59373566

chr19=59128983

chr22=51304566

chr21=48129895

chrM=16571

[options]

add.chr.as.prefix=FALSE

awhole.only=FALSE

suppress.evaluated.length.warning=FALSE

keep.distributions=FALSE

showTkProgressBar=FALSE

showProgressBar=FALSE

[tests]

ecdf.area.permut.number=10

mean.distance.permut.number=10

jaccard.measure.permut.number=10

random.seed=1248312

2.8 Mapping

If we test the correlation of a reference and query that are consistently found
in the same chromosomal regions (e.g. in genes), we will always achieve what
looks like extremely high correlation on a genomic scale and we are unable to ask
questions about finer-scale associations. To use the Genometric Correlation sta-
tistical tests on data such as these, we can convert the regions (that the query
and reference occupy) to pseudochromosomes, and then run the Genometri-

Correlation test. The mapping is available in the package as MapRangesToGe-
nomicIntervals.

The MapRangesToGenomicIntervals accepts two GRanges, and maps the
intervals from the second interval set that are contained in the first interval set,
recalculating the coordinates so that within each new interval the coordinates
range from 1 to the length of the interval.

Let’s see how it works. In this artificial example, we create two random
feature sets that reside only in bases [1000000, 2000000] in a chromosome of
length 3000000. First, we correlate these two features as is, not accounting for

21

their restricted range. Next we will run the correlation again, this time using the
mapping functions to test their relationship only within the [1000000, 2000000]
chromosomal range.

In the first test, the query and reference appear to be correlated, and all of the
correlations disappear when the test is confined to the correct genomic interval,
except the relative.distances family of tests that identify the features as
independent in both cases.

> population <- 1000

> chromo.length <- c(the_chromosome = 3e+06)

> names(chromo.length) <- c("the_chromosome")

> rquery <- GRanges(ranges = IRanges(start = runif(population,

+ 1e+06, 2e+06 - 10), width = c(10)),

+ seqnames = "the_chromosome", seqlengths = chromo.length)

> rref <- GRanges(ranges = IRanges(start = runif(population,

+ 1e+06, 2e+06 - 10), width = c(10)),

+ seqnames = "the_chromosome", seqlengths = chromo.length)

> unmapped_result <- GenometriCorrelation(rquery,

+ rref, chromosomes.length = chromo.length,

+ permut.number = permut.number, keep.distributions = FALSE,

+ showProgressBar = FALSE)

> map_space <- GRanges(ranges = IRanges(start = c(1e+06),

+ end = c(2e+06)), seqnames = "the_chromosome",

+ seqlengths = chromo.length)

> mapped_rquery <- MapRangesToGenomicIntervals(what.to.map = rquery,

+ where.to.map = map_space)

> mapped_rref <- MapRangesToGenomicIntervals(what.to.map = rref,

+ where.to.map = map_space)

> mapped_result <- GenometriCorrelation(mapped_rquery,

+ mapped_rref, permut.number = permut.number,

+ keep.distributions = FALSE, showProgressBar = FALSE)

> cat("Unmapped result:\n")

Unmapped result:

> print(unmapped_result)

the_chromosome

query.population 1000

reference.population 1000

alternative "two.sided"

query.coverage 9959

reference.coverage 9971

relative.distances.ks.p.value 0.3451683

relative.distances.ecdf.deviation.area 0.006234726

relative.distances.ecdf.area.correlation -0.02438179

query.reference.intersection 103

22

query.reference.union 19827

jaccard.measure 0.005194936

projection.test.obs.to.exp 2.707853

projection.test.direction "attraction"

projection.test.p.value 0.004524738

scaled.absolute.min.distance.sum 174.0337

relative.distances.ecdf.deviation.area.p.value 0.36

relative.distances.ecdf.deviation.area.test.direction "attraction"

scaled.absolute.min.distance.sum.p.value "<0.02"

scaled.absolute.min.distance.sum.test.direction "attraction"

jaccard.measure.p.value "<0.02"

jaccard.measure.test.direction "attraction"

> cat("Mapped result:\n")

Mapped result:

> print(mapped_result)

the_chromosome_mapped

query.population 1000

reference.population 1000

alternative "two.sided"

query.coverage 9959

reference.coverage 9971

relative.distances.ks.p.value 0.3451683

relative.distances.ecdf.deviation.area 0.006234726

relative.distances.ecdf.area.correlation -0.02438179

query.reference.intersection 103

query.reference.union 19827

jaccard.measure 0.005194936

projection.test.obs.to.exp 0.9026185

projection.test.direction "repulsion"

projection.test.p.value 0.9219071

scaled.absolute.min.distance.sum 522.1005

relative.distances.ecdf.deviation.area.p.value 0.44

relative.distances.ecdf.deviation.area.test.direction "attraction"

scaled.absolute.min.distance.sum.p.value 0.3

scaled.absolute.min.distance.sum.test.direction "repulsion"

jaccard.measure.p.value 0.8

jaccard.measure.test.direction "attraction"

Mapping config example is mapping-config.ini:

> mapconfig <- new("GenometriCorrConfig",

+ system.file("extdata", "mapping-config.ini",

+ package = "GenometriCorr"))

> print(mapconfig)

23

[data]

query=UCSCcpgis_hg19.bed

query.format=bed

reference=UCSCrefseqgenes_hg19.bed

reference.format=bed

mapping=first_10000000.bed

mapping.format=bed

do.mapping=TRUE

[chromosomes]

chr1

chr2

chr3

[chromosomes.length]

chr1=249250621

chr2=243199373

chr3=198022430

chr4=191154276

chr5=180915260

chr6=171115067

chr7=159138663

chrX=155270560

chr8=146364022

chr9=141213431

chr10=135534747

chr11=135006516

chr12=133851895

chr13=115169878

chr14=107349540

chr15=102531392

chr16=90354753

chr17=81195210

chr18=78077248

chr20=63025520

chrY=59373566

chr19=59128983

chr22=51304566

chr21=48129895

chrM=16571

[options]

add.chr.as.prefix=FALSE

awhole.only=FALSE

suppress.evaluated.length.warning=FALSE

keep.distributions=FALSE

24

showTkProgressBar=FALSE

showProgressBar=FALSE

[tests]

ecdf.area.permut.number=100

mean.distance.permut.number=100

jaccard.measure.permut.number=100

random.seed=1248312

When the mapping is called via the config file, only the whole-genome result
is calcualted by default (awhole.only default is TRUE).

2.9 One more example: aligned reads in query

Let’s try to work with aligned reads. The example file we contains reads from
the ChIP-Seq Analysis of H3K4me3 in hESC H1 Cells, sample GSM433170, from
GEO. The data is restricted to chr15:73842345-83842344 interval. We test the
hypothesis of statistical collocation of the reads with RefSeq genes. As far as
we are intersted only in the interval we have data for, we map both reads and
genes to the interval.

> reads <- import(con = system.file("extdata",

+ "GSM433170_BI.H1.H3K4me3.Solexa-8038_chr15.bed",

+ package = "GenometriCorr"), format = "bed")

> interval <- GRanges(seqnames = c("chr15"),

+ ranges = IRanges(start = c(73842345),

+ width = c(1e+07)))

> reads.in.interval <- MapRangesToGenomicIntervals(interval,

+ reads)

> genes.in.interval <- MapRangesToGenomicIntervals(interval,

+ refseq, unmapped.chromosome.warning = FALSE)

> H3K4Me3.vs.genes <- GenometriCorrelation(reads.in.interval,

+ genes.in.interval, showProgressBar = FALSE)

> cat("H3K4Me3 vs genes in chr15:73842345-83842344:\n")

H3K4Me3 vs genes in chr15:73842345-83842344:

> print(H3K4Me3.vs.genes)

chr15_mapped

query.population 15741

reference.population 568

alternative "two.sided"

query.coverage 1791354

reference.coverage 5918085

relative.distances.ks.p.value 5.17808e-13

relative.distances.ecdf.deviation.area 0.007391792

25

relative.distances.ecdf.area.correlation 0.02950853

query.reference.intersection 1049883

query.reference.union 6659556

jaccard.measure 0.1576506

projection.test.obs.to.exp 1.083659

projection.test.direction "attraction"

projection.test.p.value 3.650401e-37

scaled.absolute.min.distance.sum 21088.91

relative.distances.ecdf.deviation.area.p.value "<0.02"

relative.distances.ecdf.deviation.area.test.direction "attraction"

scaled.absolute.min.distance.sum.p.value "<0.02"

scaled.absolute.min.distance.sum.test.direction "attraction"

jaccard.measure.p.value "<0.02"

jaccard.measure.test.direction "repulsion"

Let’s visualise first Mbp of the interval.

> VisualiseTwoIRanges(ranges(reads.in.interval),

+ ranges(genes.in.interval), end = 1e+06,

+ , nameA = "H3K4ME3 reads", nameB = "RefSeq Genes",

+ title = "H3K4Me3 vs RefGenes in chr15:73842345-83842344@Hg19")

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

H3K4ME3 reads

RefSeq Genes

in
te

rs
ec

tio
n

in
te

rs
ec

tio
n

31
44

2
31

44
2

71
23

70

Chromosome position: 3151 nucleotides per pixel

H3K4Me3 vs RefGenes in chr15:73842345−83842344@Hg19

On the right: covered nucleotides that yields full color intensity of a pixel

26

